如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
公式法◆教学目标◆◆知识与技能:会应用平方差公式进行因式分解,发展学生推理能力.◆过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.◆情感态度:培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.◆教学重点与难点◆◆重点:利用平方差公式分解因式.◆难点:领会因式分解的解题步骤和分解因式的彻底性.◆教学过程◆一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本习题14.3第2、4(2)、11题.◆板书设计◆15.4.3公式法(一)1、平方差公式:例:(1)x2-9y2;(2)16x4-y4;练习:◆课后思考◆15.3分式方程学习目标:1、列分式方程解应用题的一般步骤;2、学会用等量关系列分式方程解应用题;重点:学会用等量关系列分式方程解应用题难点:用等量关系列分式方程解应用题一、学前准备:1.如何解分式方程(1)解分式方程的基本思想——,即把分式方程的分母去掉,使分式方程化成整式方程,就可以利用整式方程的解法求解了。(2)解分式方程的步骤:①:在方程的两边都乘最简公分母,约去分母,化成整式方程;②这个整式方程;③:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。(3)“增根”是怎样产生的?2.解方程(1)(2)3.一件工作,甲单独做小时完成,乙单独做小时完成,则甲的工效为,乙的工效为。则甲、乙合作小时完成。二、合作探究:问题1.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。求乙队单独完成需要的时间?哪个队的施工速度快?三、当堂训练:1.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?