如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
14.1.3积的乘方教学目标经历探索积的乘方的运发展推理能力和有条理的表达能力.学习积的乘方的运算法则,提高解决问题的能力.进一步体会幂的意义.理解积的乘方运算法则,能解决一些实际问题.教学重点积的乘方运算法则及其应用.幂的运算法则的灵活运用.课时分配1课时班级教学过程设计意图回顾旧知识同底数幂的乘法幂的乘方创设情境,引入新课问题:已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?学生分析(略)提问:体积应是V=(2×103)3cm3,结果是幂的乘方形式吗?底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,请同学们自己探索,发现其中的奥秒.自主探究,引出结论1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()(2)(ab)3=______=_______=a()b()(3)(ab)n=______=______=a()b()(n是正整数)2.分析过程:(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,【1】(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n==·=anbn3.得到结论:积的乘方:(ab)n=an·bn(n是正整数)把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.4.积的乘方法则可以进行逆运算.即:an·bn=(ab)n(n为正整数)【2】an·bn=·──幂的意义=──乘法交换律、结合律=(a·b)n──乘方的意义同指数幂相乘,底数相乘,指数不变.【1】其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2)、(3)题.【2】这个结论很重要设计意图巩固成果,加强练习例:(1)(2a)3(2)(-5b)3(3)(xy2)2(4)(-2x3)4练习:课本练习综合练习2(x3)2·x3-(3x3)3+(5x)2·x7(3xy2)2+(-4xy3)·(-xy)(-2x3)3·(x2)2(-x2y)3+7(x2)2·(-x)2·(-y)3[(m-n)3]p·[(m-n)(m-n)p]5(0.125)7×88(0.25)8×4102m×4m×()m已知10m=5,10n=6,求102m+3n的值小结:1.总结积的乘方法则,理解它的真正含义。2.幂的三条运算法则的综合运用作业板书设计教学反思预习要点《轴对称》尊敬的各位评委:大家好!今天我说课的内容是轴对称中的第一课时,下面,对本节课进行说明。一、教材分析教材的地位和作用:本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。二、学情分析八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。三、教学目标及重点、难点的确定根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:(一)教学目标:1、知识技能(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.(2)理解并掌握轴对称的概念,对称轴;了解对称点.(3)了解轴对称图形和轴对称的联系与区别.2、过程与方法目标经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.3、情感、态度与价值观通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。(二)教学重点:轴对称图形和轴对称的有关概念.(三)教学难点:轴对称图形与轴对称的联系、区别.四、教法和学法设计本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:【教法策略】采用以直观演示