如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
15.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、教学过程:(一)板书标题,呈现教学目标:1.了解分式的概念,有意义的条件,分式的值为零的条件。2.运用类比转化的思想方法研究问题。(二)引导学生自学:阅读P2-4练习,并思考下列问题:1.完成P2的思考;2.分式的概念?分式有意义的条件,分式的值为零的条件?3.P3例1如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?4.完成P4的练习。8分钟后,检查自学效果(三)学生自学,教师巡视:学生认真自学,并完成P4练习(四)检查自学效果:1.学生回答老师所提出的问题2.学生回答P4练习(五)引导学生更正,归纳:1.更正学生错误;2.分式的概念:一般地,如果A,B表示两个整数,并且B中都含有字母.那么式子叫做分式。3.分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数.4.分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.5.“在什么条件下,分式的值为0?”,必须同时满足两个条件:eq\o\ac(○,1)分母不能为零;eq\o\ac(○,2)分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.(六)课堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4,,,,,2.当x取何值时,下列分式有意义?(1)(2)(3)3.当x为何值时,分式的值为0?(1)(2)(3)作业:1.习题15.12,3,8,13(A本)2.《感悟》P1-23.预习P4-P8《轴对称》尊敬的各位评委:大家好!今天我说课的内容是轴对称中的第一课时,下面,对本节课进行说明。一、教材分析教材的地位和作用:本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。二、学情分析八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。三、教学目标及重点、难点的确定根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:(一)教学目标:1、知识技能(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.(2)理解并掌握轴对称的概念,对称轴;了解对称点.(3)了解轴对称图形和轴对称的联系与区别.2、过程与方法目标经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.3、情感、态度与价值观通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。(二)教学重点:轴对称图形和轴对称的有关概念.(三)教学难点:轴对称图形与轴对称的联系、区别.四、教法和学法设计本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。【辅助策略】我利用多媒体课件辅助教学,适时呈现问