如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第十三章轴对称教学目的:让学生掌握等腰三角形中的分类讨论思想和方程思想。教学重点:掌握等腰三角形中不同的分类问题;及用方程思想解决问题。教学难点:学生对各种分类的理解及如何构造方程。教学过程:一、分类讨论思想1.边分腰、底例1:等腰三角形两边长为6cm,8cm,求它的周长.例2:等腰三角形周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.练习:(1)一个等腰三角形的周长为14cm,且一边长为4cm,那么这个等腰三角形的三边长分别为.(2)等腰三角形一腰上的中线将其周长分为15和12两部分,则它的底边长是.2.内角分顶角还是底角例3:已知等腰三角形有一个内角为50°,求其余两个内角的度数.例4:等腰三角形ABC中,∠A=40°,则△ABC两个底角的平分线所夹得钝角是多少度?(画图)练习:(1)已知等腰三角形有一个内角为120°,则其余两个内角的度数为.(2)等腰三角形的一个外角是110°,则顶角度数为.3.高分形内和形外例5:已知等腰三角形一腰上的高与另一腰的夹角为30°,求这个等腰三角形顶角的度数练习:已知等腰三角形ABC中,BC边上的高AD=BC,求∠BAC的度数.(选作)(先按腰底分,再按形内形外分)二、方程思想等腰三角形的角之间的数量关系:(1)顶角和底角之间的数量关系.(2)顶角的外角与底角之间的数量关系.例6:如图,在△ABC中,∠ABC=1000,点D、E分别在AC和AB上,且AE=ED=DB=BC,求∠A的度数.例7:如图,在△ABC中,AB=AC,D是BC上一点,E是AC上一点,AD=AE,∠BAD=30°,求∠EDC的度数.练习:(1)如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度数.(2)如图,在△DAB中,DA=DB,点C在BD上,∠DAC=30°,AB=AC,求∠B的度数.三、小结:1.分类讨论问题:(1)分类讨论问题的一般解题步骤:①确定分类讨论的对象②逐一分析解题③综合答题(2)常见分类:等腰三角形的边(底边,腰)、角(顶角,底角)的分类、三角形的高线位置的分类。2.在几何解题中,当未知量比较多,数量关系不能直接由已知推未知的时候,设出未知量,并用未知数表示其它量,再列方程求出未知量。全等三角形教学目标①通过实例理解全等形的概念和特征,并能识别图形的全等.②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.③能运用性质进行简单的推理和计算,解决一些实际问题.④通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.教学重点全等三角形的有关概念和性质.知识难点理解全等三角形边、角之间的对应关系.教学准备复写纸、剪刀、半透明的纸、多媒体课件(几个重要片断中使用)等.教材分析本节是初中几何比较重要的一节入门课它的基础是学生已经了解三角形的基本概念,教师准备引导学生学习全等三角形,为后面进一步学习全等三角形的判定打一个良好的基础.通过本节学习要让学生了解怎样的两个图形是全等形,会用符号语言表示两个三角形全等.知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角.掌握全等三角形的性质,通过演绎变换两个重合的三角形,呈现出它们之间的各种不同位置的活动,从中了解体会图形变换的思想,逐步培养动态研究几何的意识.本节课的重点是全等三角形的性质.难点是确认全等三角形的对应元素.本节课可以通过丰富多彩的实验、投影、多媒体手段等让学生取得充分的感性认识在此基础上,教学重心应放在“全等三角形的性质”上,因而对它的处理,不论从时间分配上,还是从教学手段的应用上都应给予高度重视.在激发学生兴趣的同时,要对学生进行必要的能力训练.教学过程(师生活动)设计理念问题情境1.展现生活中的大量图片或录像片断。片断1:图案.片断2:一幅漂亮的山水倒影画,一幅用七巧板拼成的美丽图案.2.学生讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中.它反映了现实生活中存在着大量的全等图形.图片的收集与制作1.收集学生讨论中的图片.2.讨论(或介绍)用复写纸、手撕、剪纸、扎针眼等制作类似图形的方法.对学生进行操作技能的培训与指导.学生分组讨论、思考探究1.上