如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
12.2三角形全等的判定教学目标1.三角形全等的判定:角边角、角角边.2.三角形全等的判定小结.3.掌握三角形全等的“角边角”、“角角边”条件.4.能运用全等三角形的判定,解决简单的推理证明问题.重点难点重点:已知两角一边的三角形全等探究.难点:灵活运用三角形全等的判定证明.教学过程Ⅰ.提出问题,创设情境1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题1:三角形中已知两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.②画线段A′B′,使A′B′=AB.③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.④射线A′D与B′E交于一点,记为C′,即可得到△A′B′C′.将△A′B′C′与△ABC重叠,发现两三角形全等.两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?探究问题4:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°,∠A=∠D,∠B=∠E,∴∠A+∠B=∠D+∠E.∴∠C=∠F.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).例如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.分析:AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.证明:在△ADC和△AEB中,所以△ADC≌△AEB(ASA)所以AD=AE.Ⅲ.随堂练习(一)课本练习1、2.(二)补充练习图中的两个三角形全等吗?请说明理由.答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.Ⅳ.课时小结至此,我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边边边(SSS),边角边(SAS),角边角(ASA),角角边(AAS).推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.Ⅴ.作业课本习题5、6题.分式的乘除分式的乘除(一)教学目标ﻩ理解分式乘除法的法则,会进行分式乘除运算重点、难点ﻩ重点是掌握分式的乘除运算难点分子、分母为多项式的分式乘除法运算情感态度与价值观通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识第一步:创景引入问题1一个长方体容器的容积为V,底面的长为a宽为b,当容器内的水占容积的时,水高多少?长方体容器的高为,水高为.问题2大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是公顷/天,小拖拉机的工作效率是公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的()倍.观察下列运算:猜一猜与同伴交流。第二步:讲授新知2、解读探究经观察、类比不难发现由学生自己归纳总结出分式乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用符号语言表达:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。用符号语言表达:第三步:应用举例例1计算注意:分式运算的结果通常要化成最简分式或整式例2计算做一做: