如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
勾股定理教案(必备)勾股定理教案在教学工作者开展教学活动前,编写教案是必不可少的,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案要怎么写呢?下面是小编整理的勾股定理教案,希望对大家有所帮助。勾股定理教案篇1教学目标:能运用勾股定理及直角三角形的判定条件解决实际问题。在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。教学准备《数学学与练》、集体备课意见和主要参考资料、页边批注教学过程一、新课导入本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流。创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的.顶端下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣。二、新课讲授问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。设计问题二促使学生能主动积极地从数学的角度思考实际问题。教学中学生可能会有多种思考,比如:①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法。三、例题教学课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题。通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智。四、小结我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。勾股定理教案篇2一、教学目标(一)知识点1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。2、会利用勾股定理解释生活中的简单现象。(二)能力训练要求1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的`思想。2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的`能力。(三)情感与价值观要求1、培养学生积极参与、合作交流的意识。2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。二、教学重、难点重点:探索和验证勾股定理。难点:在方格纸上通过计算面积的方法探索勾股定理。三、教学方法交流探索猜想。在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。四、教具准备1、学生每人课前准备若干张方格纸。2、投影片三张:第一张:填空(记作1.1.1A);第二张:问题串(记作1.1.1B);第三张:做一做(记作1.1.1C)。五、教学过程创设问题情境,引入新课出示投影片(1.1.1A)(1)三角形按角分类,可分为几类?(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?勾股定理教案