如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
《梯形面积》教学反思作为一名优秀的人民教师,教学是重要的工作之一,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?下面是小编帮大家整理的《梯形面积》教学反思,仅供参考,希望能够帮助到大家。《梯形面积》教学反思1本节课的内容是在学生学习了平行四边形的面积、三角形的面积以及梯形的图形特征基础上进行教学的。在前面的学习中,学生已经能够通过拼摆独立推导出图形的面积计算公式,初步领悟了图形转化的数学思想。成功之处:多种方法推导梯形的面积,发挥学生的创造力。在教学中首先让学生用自己准备的两个完全一样的梯形通过拼摆,独立推导梯形的`面积计算公式,即用两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是所拼成的平行四边形面积的一半,平行四边形的底等于梯形的上底与下底的和,所以梯形的面积=(上底+下底)×高÷2。然后让学生思考能不能根据一个梯形进行面积公式的推导呢?从而得出以下几种方法:(1)把梯形剪成一个平行四边形和一个三角形,梯形的面积=平行四边形的面积+三角形的面积。(2)把梯形剪成两个三角形,梯形的面积=两个三角形的面积之和。在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解了梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。不足之处:由于用多种方法探索梯形的面积计算公式,导致基本方法中出现部分学生不会叙述。再教设计:突出基本方法的教学,注意其它方法的时间分配。《梯形面积》教学反思2今天我上了已经在网上研讨了数日的《梯形的面积》一课,反思整堂课的教学,主要有以下几个特点:1、体现了知识的迁移在回顾旧知,分析问题的环节,我用课件出示平行四边形、三角形面积公式推导的过程,带领学生回顾旧知,再一次体会转化的思想。接着问学生,那么要想求梯形的面积我们该怎么做呢?因为刚刚复习了转化的思想,所以学生很容易想到,将梯形转化成我们学过的图形,为接下来的解决问题指明了方向。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造了条件。2、体现了数学与生活的联系首先,在课的开始,我从车窗玻璃是什么形状,这一生活中的情境,导入新课,让学生感受到数学来源于生活。其次,推导出梯形面积公式后,学生应用探索出来的方法解决实际生活中的问题。比如,求水渠横截面的面积,求机翼平面图的面积等。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。3、体现了探究性学习的特点本节课充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,让学生利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法。在这一环节中,学生出现了多种操作方法,如:有的学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;有的学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;有的学生将梯形沿对角线剪开变成两个三角形,推导出面积公式等等。充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了“学生是学习的主人,教师是组织者、引导者和参与者”的思想。4、体现了练习的层次性练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。第一道题,直接代入公式就可以算出结果。第二道题,求机翼平面图,需要先求出一个梯形的面积,然后乘以2,才能得到整个机翼平面图的面积。第三道题,则需要先根据各种图形的特点,求出梯形的上底或下底,再去代入公式,求面积。第四题,是通过计算和观察,发现,等底等高的梯形,面积相等。反思整个课堂教学过程,还是存在着许多需要改进的地方。1、先复习旧知,再情境导入会更好。在我设计的教案中是先情境导入,引出求梯形面积公式,问学生,应该怎样求?引导学生回顾推导平行四边形、三角形面积公式的过程,然后知识迁移,进而小组合作推导梯形面积公式。但在实际教学的过程中发现,先思考怎样求梯形面积,再回顾旧知,这样容易打断学生思考怎样求梯形面积的思路。因此,教学环节可以做这样的`调整:先回顾旧知,然后再情境导入,求梯形的面积。这样,学生在复习了转化的思想,推导的方法后,可更好地将其运用到梯形面积公式的推导中去。2、关于推导方法的汇报、学习,可以