您所在位置: 网站首页 / 文档列表 / 中学学案 / 文档详情
最新第2章 2.2.1 第2课时-经典通用.pptx 立即下载
上传人:石头****海海 上传时间:2024-09-03 格式:PPTX 页数:38 大小:10.6MB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

最新第2章 2.2.1 第2课时-经典通用.pptx

最新第2章2.2.1第2课时-经典通用.pptx

预览

免费试读已结束,剩余 28 页请下载文档后查看

6 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

问题导学问题导学表示以为圆心,以为半径的圆[思考辨析判断正误]1.圆的一般方程可以化为圆的标准方程.()2.二元二次方程x2+y2+Dx+Ey+F=0一定是某个圆的方程.()3.若方程x2+y2-2x+Ey+1=0表示圆,则E≠0.()题型探究命题角度1圆的一般方程的概念例1若方程x2+y2+2mx-2y+m2+5m=0表示圆,求实数m的取值范围,并写出圆心坐标和半径.反思与感悟形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有如下两种方法(1)由圆的一般方程的定义,若D2+E2-4F>0成立,则表示圆,否则不表示圆.(2)将方程配方后,根据圆的标准方程的特征求解.应用这两种方法时,要注意所给方程是不是x2+y2+Dx+Ey+F=0这种标准形式,若不是,则要化为这种形式再求解.跟踪训练1(1)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标为____________,半径为_____.(2)点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线x-y+1=0对称,则该圆的面积为_____.命题角度2求圆的一般方程例2已知A(2,2),B(5,3),C(3,-1).(1)求△ABC的外接圆的方程;(2)若点M(a,2)在△ABC的外接圆上,求a的值.引申探究若本例中将条件改为“圆C过A,B两点且圆C关于直线y=-x对称”,其他条件不变,如何求圆C的方程?反思与感悟应用待定系数法求圆的方程时应注意:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心坐标或半径列方程,一般采用圆的标准方程,再用待定系数法求出a,b,r.(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D,E,F.跟踪训练2已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,求圆的方程.解方法一(待定系数法)设圆的方程为x2+y2+Dx+Ey+F=0,将P,Q的坐标分别代入上式,故圆的方程为x2+y2-2x-12=0或x2+y2-10x-8y+4=0.方法二(几何法)由题意得线段PQ的垂直平分线方程为x-y-1=0,∴所求圆的圆心C在直线x-y-1=0上,设其坐标为(a,a-1).解得a1=1,a2=5,解以圆拱桥拱顶为坐标原点,以过拱顶的竖直直线为y轴,建立平面直角坐标系,如图所示.设圆心为C,水面所在弦的端点为A,B,则由已知得A(6,-2).设圆的半径为r,则C(0,-r),即圆的方程为x2+(y+r)2=r2.①将点A的坐标(6,-2)代入方程①,得36+(r-2)2=r2,∴r=10.∴圆的方程为x2+(y+10)2=100.②当水面下降1米后,可设点A′的坐标为(x0,-3)(x0>0),将点A′的坐标(x0,-3)代入方程②,得x0=,∴当水面下降1米后,水面宽为2x0=2米.反思与感悟本类题一般是用解析法解决实际问题.解析法解决实际问题的步骤:建系、设点、列式、计算、总结.跟踪训练3已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为3m,高为3.5m的货车能不能驶入这个隧道?(2)若N为线段AM的中点,试求点N的轨迹.反思与感悟求轨迹方程的一般步骤(1)建立适当的平面直角坐标系,用有序实数对(x,y)表示动点P的坐标.(2)写出适合条件的点P的集合M={P|M(P)}.(3)用坐标表示条件M(P),列出方程f(x,y)=0.(4)化方程f(x,y)=0为最简形式.(5)证明以化简后的方程的解为坐标的点都是曲线上的点.解设P(x,y),圆P的半径为r.由题设得y2+2=r2,x2+3=r2,从而y2+2=x2+3.故圆心P的轨迹方程为y2-x2=1.解答故圆P的方程为x2+(y+1)2=3或x2+(y-1)2=3.达标检测答案答案答案答案11.圆的一般方程x2+y2+Dx+Ey+F=0,来源于圆的标准方程(x-a)2+(y-b)2=r2.在应用时,注意它们之间的相互转化及表示圆的条件.2.圆的方程可用待定系数法来确定,在设方程时,要根据实际情况,设出恰当的方程,以便简化解题过程.3.对于曲线的轨迹问题,要作简单的了解,能够求出简单的曲线的轨迹方程,并掌握求轨迹方程的一般步骤.
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

最新第2章 2.2.1 第2课时-经典通用

文档大小:10.6MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用

手机号注册 用户名注册
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
登录
手机号登录 微信扫码登录
微信扫一扫登录 账号密码登录

首次登录需关注“豆柴文库”公众号

新用户注册
VIP会员(1亿+VIP文档免费下)
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用