如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
《微积分A》习题解答习题2.4(P118)1.求下列函数的高阶导数.(1)y=e−sinx,求y′′.解:y′=−cosxe−sinx,y′′=sinxe−sinx+cos2xe−sinx=e−sinx(sinx+cos2x)(2)y=ln(x+x2+1),求y′′.x1+x2+1112x−x解:y′==,y′′=−=x+x2+1x2+12(x2+1)3(x2+1)3(3)y=e2x⋅sin(2x+1),求y′′.解:y′=2e2x⋅sin(2x+1)+2e2xcos(2x+1)=2e2x[sin(2x+1)+cos(2x+1)]y′′=4e2x[sin(2x+1)+cos(2x+1)]+2e2x[2cos(2x+1)−2sin(2x+1)]=8e2x⋅cos(2x+1)11+x1(4)y=ln−arctanx,求y′′.41−x211解:y=[ln(1+x)−ln(1−x)]−arctanx4211111111y′=[+]−=(−)41+x1−x21+x221−x21+x212x2x2x(1+x4)y′′=[+]=2(1−x2)2(1+x2)2(1−x4)2a+bx(5)y=ln,求y()n.a−bx()n(n−1)!解:y=ln(a+bx)−ln(a−bx),由()lnx=(−1)n−1及复合函数求导法得:xn()nnn−1(n−1)!nn−1(n−1)!y=b(−1)−(−b)(−1)()a+bxn()a−bxn第2章导数与微分第4节高阶导数1/6《微积分A》习题解答⎡(−1)n−11⎤=bn(n−1)!+⎢nn⎥⎣()a+bx()a−bx⎦(6)y=sin4x−cos4x,求y()n.解:y=sin4x−cos4x=(sin2x+cos2x)(sin2x−cos2x)=−cos2x()nnπnπ由()cosx=cos(x+)及复合函数求导法得:y()n=−2ncos(2x+)222x+2(7)y=,求y()n.x2+2x−311解:y=+,x+3x−1n!n!⎛11⎞y()n=(−1)n+(−1)n=(−1)nn!⎜+⎟n+1n+1⎜n+1n+1⎟(x+3)(x−1)⎝(x+3)(x−1)⎠(8)y=eaxsinbx,求y()n.bab解:设sinϕ=,则cosϕ=,ϕ=arctan,则a2+b2a2+b2ay′=aeaxsinbx+beaxcosbx=eax(asinbx+bcosbx)ab=eaxa2+b2(sinbx+cosbx)a2+b2a2+b2=eaxa2+b2(cosϕsinbx+sinϕcosbx)=eaxa2+b2sin(bx+ϕ)同理可得:nby()n=eax(a2+b2)nsin(bx+nϕ)y(n)=(a2+b2)2eaxsin(bx+narctan)a1−x(9)y=,求y()n.1+x()n2⎛1⎞解:y=−1,y()n=2⎜⎟(n≥1)1+x⎝1+x⎠()n⎛1⎞n!n!由⎜⎟=(−1)n及复合函数求导法得:y()n=(−1)n⋅2⋅⎝x⎠xn+1(1+x)n+1第2章导数与微分第4节高阶导数2/6《微积分A》习题解答(10)y=(x2+x+1)sinx,求y(15).nπ解:令u=sinx,v=x2+x+1,则u()n=sin(x+),v′=2x+1,,v′′=22v(n)=0(n≥3),由莱布尼兹公式得:(15)(15)1(14)2(13)y=uv+C15uv′+C15uv′′=(x2+x+1)(−cosx)+15(−sinx)(2x+1)+15×14cosx=(209−x2−x)cosx−15(2x+1)sinx3.设函数f()x有任意阶导数,且f′()()x=f2x,求f()n()x.解:f′′(x)=2f(x)f′(x)=2f3(x),f′′′()x=3!f2()xf′()x=3!f4()x()nn+1LLLLLLLLLLL,()!()fx=nfx4.求下列隐函数的二阶导数.y(2)lnx2+y2=arctanx1y解:原式化为:ln(x2+y2)=arctan,2x12x+2yy′1y′x−y两端同时对x求导得:⋅=⋅22222x+y⎛y⎞x1+⎜⎟⎝x⎠x+y故()x−yy′=x+y,y′=x−y上式两端再同时对x求导:(1−y′)y′+(x−y)y′′=1+y′,1+(y′)22(x2+y2)即y′′==x−y()x−y3(4)x