如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初三数学总复习资料代数部分第一节实数[知识要点]1.实数的分类2.数轴:(1)定义:规定了原点、正方向和单位长度的直线叫做数轴。(2)实数和数轴上的点一一对应。3.相反数:只有符号不同的两个数互为相反数。a的相反数为-a若a、b互为相反数,则a+b=0或a=-b4.倒数:乘积为1的两个数互为倒数。a(a≠0)的倒数为.5.绝对值6.实数的大小比较(1)正数>0;负数<0;正数>负数;两个正数,绝对值大的正数大;两个负数,绝对值大的反而小。(2)用数轴比较:右边的数大于左边的数。7.科学记数法、近似数和有效数字。(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a<10,n是整数)(2)近似数(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。8.实数的运算(1)运算法则(2)运算律(3)运算顺序第二节二次根式[知识要点]1.平方根(1)定义:若x2=a,则x是a的平方根,记作:x=±(2)性质:1)正数的平方根有2个,它们互为相反数2)0的平方根是03)负数没有平方根2.算术平方根(1)定义:正数a的正的平方根,记作(2)性质:1)正数的算术根是一个正数。2)0的算术平方根是03)负数没有算术平方根3.立方根4.二次根式的有关概念(1)二次根式:型如√a(a≥0)的式子叫二次根式。(2)最简二次根式:1)被开方数的因数是整数2)被开方数中不含能开得尽方得因数.(3)同类二次根式:化成同类二次根式以后,被开方数相同得二次根式,叫做同类二次根式.(4)二次根式的性质(5)分母有理化:把分母中得根号化去,叫做分母有理化.(6)二次根式得运算.第三节整式和因式分解[知识要点]1.代数式2.整式(1)同类项:所含字母相同,且相同字母的次数也相同的项叫同类项。(2)添括号,去括号法则(3)指数运算3.因式分解(1)定义:把一个多项式化成几个整式积的形式,叫做因式分解。(2)因式分解方法:1)提公因式法2)公式法3)十字相乘法4)分组分解法第四节分式[知识要点]1.分式(1)定义:分母中含有字母的式子。(2)分式有意义的条件:分母≠0(3)分式值=0的条件:分子=0且分母≠02.分式的性质(1)基本性质:(2)变号法则:分子、分母和分式本身的符号,改变其中任意两个,分式的值不变。3.分式运算:加、减、乘、除、乘方、开方第五节一元一次方程一元二次方程和不等式[知识要点]1.方程的有关概念:方程、方程的解2.一元一次方程:(1)定义:只含有一个未知数,并且未知数的次数是一次的方程。(ax=b,a≠0)(2)解法:去分母、去括号、移项、合并同类项、系数化13.一元二次方程(1)定义:只含有一个未知数,并且未知数的最高次数是2的方程。一般形式:ax2+bx+c=0(a≠0)(2)解法:1)直接开平方法2)因式分解法3)公式法:4.一元一次不等式:ax+b>0或ax+b<0(a≠0)5.一元一次不等式组解法:1)求出各个不等式的解集2)利用数轴确定不等式组的解集。例题分析练习一、选择题1.火星和地球之间的距离为34,000,000千米,用科学记数法表示为()A、0.34×108千米B、3.4×106千米C、34×106千米D、3.4×107千米2.把1949按四舍五入取近似数,保留两个有效数字表示为()A、1.9×104B、2.0×104C、1.9×103D、2.0×1033.如果在数轴上表示a,b两个实数的点的位置如图所示,那么|a-b|+|a+b|化简的结果等于()A、2aB、-2aC、0D、2b4.若|a|=-a,则a的取值范围是()A、正数B、非正数C、负数D、非负数12.已知x=-2是方程2x+m-4=0的一个根,则m的值是()A、8B、-8C、0D、213.方程(x-3)2=3-x的根是()A、x=2B、x=3C、x=4D、x=2或x=314.已知一个矩形的周长是30,宽的长度不超过3,则长的取值范围是()A、27≤a<30B、12<a<15C、12≤a<15D、0<a≤12二、计算题三、解方程四、解不等式或组答案一、选择题1.D2.C3.B4.B5.B6.A7.A8.C9.A10.D11.A12.A13.D14.C二、计算题几何部分第一节相交线、平行线[知识要点]一、相交线1.线段的垂直平分线:(1)定义:垂直且平分一条线段的直线,叫做线段的垂直平分线。(2)性质:线段垂直平分线上的点,到线段两端点的距离相等。2.角(1)定义(2)角的分类:平角