您所在位置: 网站首页 / 文档列表 / 高考 / 文档详情
2013高考易错题查漏补缺数学:易错易忘题 导数.doc 立即下载
上传人:yy****24 上传时间:2024-09-08 格式:DOC 页数:5 大小:428KB 金币:12 举报 版权申诉
预览加载中,请您耐心等待几秒...

2013高考易错题查漏补缺数学:易错易忘题 导数.doc

2013高考易错题查漏补缺数学:易错易忘题导数.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

12 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考学习网-中国最大高考学习网站Gkxx.com|我们负责传递知识![易错点]牢记常用的求导公式,求复合函数的导数要分清函数的复合关系.例:函数的导数为。[易错点分析]复合函数对自变量的导数等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即。解析:【知识点归类点拨】掌握复合函数的求导方法关键在于分清函数的复合关系,适当选定中间变量,分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数。[练习]已知,n为正整数。设,证明;设,对任意,证明解析:证明:(1)(2)对函数求导数:,当时,是关于x的增函数因此,当时,。即对任意,.【易错点】求曲线的切线方程。例:已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.(Ⅰ)求函数的解析式;【思维分析】利用导数的几何意义解答。解析:(Ⅰ)由的图象经过P(0,2),知d=2,所以由在处的切线方程是,知故所求的解析式是【知识点归类点拔】导数的几何意义:函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为特别地,如果曲线y=f(x)在点处的切线平行于y轴,这时导数不存,根据切线定义,可得切线方程为。利用导数的几何意义作为解题工具,有可能出现在解析几何综合试题中,复习时要注意到这一点.【练】(1)(2005福建卷)已知函数的图象在点M(-1,f(x))处的切线方程为x+2y+5=0.(Ⅰ)求函数y=f(x)的解析式;答案:(2)(2005高考湖南卷)设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.(Ⅰ)用表示a,b,c;答案:故,,【易错点】利用导数求解函数的单调区间及值域。例:已知函数,(Ⅰ)求的单调区间和值域;(Ⅱ)设,函数,若对于任意,总存在使得成立,求的取值范围。【易错点分析】利用导数求函数的单调区间仍然要树立起定义域优先的意识,同时要培养自已的求导及解不等式的运算能力第(Ⅱ)问要注意将问题进行等价转化即转化为函数在区间上的值域是函数的值域的子集,从而转化为求解函数在区间上的值域。解析(Ⅰ),令解得或,在,所以为单调递减函数;在,所以为单调递增函数;又,即的值域为[-4,-3],所以的单调递减区间为,的单调递增区间为,的值域为[-4,-3].(单调区间为闭区间也可以).(Ⅱ)∵,又,当时,,因此,当时,为减函数,从而当时,有.又,即当时,有,任给,有,存在使得,则又,所以的取值范围是。【知识点分类点拔】高考对导数的考查定位于作为解决初等数学问题的工具出现,侧重于考查导数在函数与解析几何中的应用,主要有以下几个方面:①运用导数的有关知识,研究函数最值问题,一直是高考长考不衰的热点内容.另一方面,从数学角度反映实际问题,建立数学模型,转化为函数的最大值与最小值问题,再利用函数的导数,顺利地解决函数的最大值与最小值问题,从而进一步地解决实际问题.用导数研究函数的性质比用初等方法研究要方便得多,因此,导数在函数中的应用作为2006年高考命题重点应引起高度注意.单调区间的求解过程,已知(1)分析的定义域;(2)求导数(3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间,对于函数单调区间的合并:函数单调区间的合并主要依据是函数在单调递增,在单调递增,又知函数在处连续,因此在单调递增。同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则二区间就可以合并为以个区间。【练】(1)已知函数f(x)=-x3+3x2+9x+a,(I)求f(x)的单调递减区间;(=2\*ROMANII)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.答案:(1)(-∞,-1),(3,+∞)(2)-7(2)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?答案:当x=10时,V有最大值V(10)=1960
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

2013高考易错题查漏补缺数学:易错易忘题 导数

文档大小:428KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用

手机号注册 用户名注册
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
登录
手机号登录 微信扫码登录
微信扫一扫登录 账号密码登录

首次登录需关注“豆柴文库”公众号

新用户注册
VIP会员(1亿+VIP文档免费下)
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用