如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
带电粒子在磁场中运动的临界问题一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由二、带电粒子在有界磁场中运动类型的分析1.给定有界磁场(1)确定入射速度的大小和方向,判定带电粒子出射点或其它【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。点评:本题给定带电粒子在有界磁场中运动的入射点和出射点,求该粒子的电量和质量之比,也可以倒过来分析,求出射点的位置。在处理这类问题时重点是画出轨迹图,根据几何关系确定轨迹半径。(2)确定入射速度的方向,而大小变化,判定粒子的出射范围【例2】如图7所示,矩形匀强磁场区域的长为L,宽为L/2。磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v的取值范围?点评:本题给定带电粒子在有界磁场中运动的入射速度的方向,由于入射速度的大小发生改变,从而改变了该粒子运动轨迹半径,导致粒子的出射点位置变化。在处理这类问题时重点是画出临界状态粒子运动的轨迹图,再根据几何关系确定对应的轨迹半径,最后求解临界状态的速率。(3)确定入射速度的大小,而方向变化,判定粒子的出射范围【例3】(2004年广东省高考试题)如图8所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比q/m=5.0×107C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。但由于入射速度的方向发生改变,从而改变了该粒子运动轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出临界状态粒子运动的轨迹图(对应的临界状态的速度的方向),再利用轨迹半径与几何关系确定对应的出射范围。2.给定动态有界磁场(1)确定入射速度的大小和方向,判定粒子出射点的位置【例4】(2006年天津市理综试题)在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?点评:本题给定带电粒子在有界磁场中运动的入射速度的大小和方向,但由于有界磁场发生改变(包括磁感应强度的大小或方向的改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,再利用轨迹半径与几何关系确定对应的出射点的位置。(2)确定入射速度和出射速度的大小和方向,判定动态有界磁场的边界位置【例5】(1994年全国高考试题)如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在