如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第二昉教育PAGEPAGE4指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●案例探究(★★★★★)设f(x)=log2,F(x)=+f(x).(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)>;(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解.[例1]已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上;(2)当BC平行于x轴时,求点A的坐标.[例2]在xOy平面上有一点列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,对每个自然数n点Pn位于函数y=2000()x(0<a<1)的图象上,且点Pn,点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.(1)求点Pn的纵坐标bn的表达式;(2)若对于每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;(3)设Cn=lg(bn)(n∈N*),若a取(2)中确定的范围内的最小整数,问数列{Cn}前多少项的和最大?试说明理由.一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果f(x)=lg(10x+1),其中x∈(-∞,+∞),那么()A.g(x)=x,h(x)=lg(10x+10-x+2)B.g(x)=[lg(10x+1)+x],h(x)=[lg(10x+1)-x]C.g(x)=,h(x)=lg(10x+1)-D.g(x)=-,h(x)=lg(10x+1)+2.(★★★★)当a>1时,函数y=logax和y=(1-a)x的图象只可能是()二、填空题3.(★★★★★)已知函数f(x)=.则f--1(x-1)=_________.4.(★★★★★)如图,开始时,桶1中有aL水,t分钟后剩余的水符合指数衰减曲线y=ae-nt,那么桶2中水就是y2=a-ae-nt,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有.三、解答题5.(★★★★)设函数f(x)=loga(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是函数y=g(x)图象上的点.(1)写出函数y=g(x)的解析式;(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.6.(★★★★)已知函数f(x)=logax(a>0且a≠1),(x∈(0,+∞)),若x1,x2∈(0,+∞),判断[f(x1)+f(x2)]与f()的大小,并加以证明.7.(★★★★★)已知函数x,y满足x≥1,y≥1.loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范围.8.(★★★★)设不等式2(logx)2+9(logx)+9≤0的解集为M,求当x∈M时函数f(x)=(log2)(log2)的最大、最小值.