如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
质数与合数说课稿质数与合数说课稿作为一无名无私奉献的教育工作者,常常需要准备说课稿,编写说课稿是提高业务素质的有效途径。那么优秀的说课稿是什么样的呢?下面是小编收集整理的质数与合数说课稿,欢迎阅读,希望大家能够喜欢。质数与合数说课稿1今天我说课的课题是《质数和合数》,它是人教版小学五年级下册第二单元第三课时的教学内容。一、教学目标:1、通过学习,使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别;2、通过自主探索,使学生掌握2、5、3、的倍数的特征;3、通过在学习数学概念的基础上,逐步培养学生的数学抽象能力;4、通过学习,使学生进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力,感受数学知识和方法的应用价值,激发学习数学的兴趣,提高学好数学的自信心。二、教材分析:这部分内容主要是教学质数和合数,教材一共安排了一个知识点、一道例题和一个练习。知识点呈现的1-20这些自然数。教材首先让学生找出1-20各数的全部因数,然后按照每个数的因数的个数进行分类。在此基础上给出质数和合数的概念。同时说明1既不是质数,也不是合,以加深学生对某些特殊数的认识。随后的例1让学生运用质数的概念和学生知道合数的概念找出100以内的所有质数。学生通过此例题可以学会找质数的一般方法“筛选”,即划掉每个质数的所有倍数(它本身除外),剩下的都是质数。本节课的知识点:1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生依据1-20各数因数的个数分类上,理解质数和合数的概念,并能正确找出100以内的所有质数。2、在探索过程中,培养学生比较、归纳与概括的能力和用数学语言进行表述交流的能力。培养学生观察、筛选、验证结果的科学探究的良好习惯。3、使学生体验学习过程是不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,激发学生勇于攀登科学高峰。4、让学生自己去经历观察、实验、猜想、证明等数学活动的过程,发展合情推理能力,初步的演绎思维能力及解决问题的能力。教学重点:通过学生理解掌握质数、合数的概念。初步学会准确判断一个数是质数还是合数。培养学生自主探索的能力,即独立获取知识的能力。教学难点:通过学生理解掌握质数、合数的概念的基础上,正确判断一个大于1的自然数是质数还是合数。并区分奇数、质数、偶数、合数,会把自然数按因数的个数进行分类。三、学情分析《质数和合数》是在学生学习了因数、倍数、奇数、偶数概念的基础上进行教学的。五年级的学生己有了一定的知识经验和转化类推能力,也有了一定的观察、猜测、验证结果的科学学习数学的学习习惯和合作、探究、迁移、类推的能力。本节课主要使学生会根据因数的分类学习质数和合数的概念,并通过主动探索,培养学生的合作能力和迁移、类推能力,理解并掌握100以内的质数表,能正确进行区分质数和合数。并能通过学习,使学生进一步体会数学知识之间的内在联系,进一步增强探索数学知识和规律的能力,感受数学知识和方法的应用价值,激发学习数学的兴趣,提高学好数学的自信心。四、教学设想;1、在《数学新课程标准》中,强调要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程。因此教学中根据儿童的认知规律,创设情境,激发学生的学习兴趣和强烈的求知欲望,引导学生积极思维,主动获取知识,使学生在自主学习、探索、交流中要学数学,会学数学和乐学数学,力求体现“以学生发展为本”的指导思想。2、本节课在设计中从学生已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会,让学生动手设计,在亲身实践中自己经过分类学习质数和合数,激发学生学习兴趣和学习动机,使学生在具体、直观的操作中自己发现质数和合数的本质特征,从而能主动、大胆地提出和参与讨论有关数学知识和问题的行为。充分体现让学生自主的去探索、去发现,自豪的成为知识的探索者和发现者,另一方面很自然的突破了本课的教学难点。3、本节课采取小组(同桌)合作与独立探索相结合的学习方式,充分利用学生间的交流、互动活动,互相碰撞、启发,获得有顺序地、全面地思考的数学方法4、充分发挥习题的功能,采用分层训练,形式多样,力求在练习过程中即巩固新知,又发展学生的数学思维。注重知识拓展,向学生呈现歌德巴赫猜想,让学生感受数学的严谨及数学结论的确定性,体会数学的美感,激发学生勇于攀登科学高峰。五、教学方法设计教学方法:讲解法、观察法、列举法、归纳法教学手段:利用学生已有的知识经验,以数学活动为主,通过观察、试验、归纳获得数学猜想,进一步准确地理解质数和合数的概念。紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、运用”这一循环过程中,自然地发现“质数和合