如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
例一:1lim(3n232n233n2...3(n1)n2)nn2解析:13232323232lim2(n2n3n...(n1)nn*nn)nn1nlim(3n232n233n2...3(n1)n23n*n2)limnnnn221lim(3312331...3nn3)0nnnnnnn1n13i133lim*xdxnnn0i14例二:1lim1[(2cosx)x1]x0x3解析:1ln2cosxlim1[ex31]x0x1ln2cosx-1(又因为lim1ex3=lim1ln(1+cosxx-1)=lim1cos-1=lim20)x0xx0x3x0x3x03x112cosx1cosx-1cosx-11limln()lim22ln(1+)limx0xx3x0xx3x036变形样式二:1例三:tan(tanxx)sin(sin)limx0tanxxsin解析:tan(tanx)tan(sinx)tan(sinx)sin(sinx)limtanxsinxlimtanxsinxxx002tan(sinxx)(1cos(sin))limsecxlimtanxx(1cos)xx0012sinxx2sin1lim12x0xx22例四:设p(x)dn(1xmn),其中m,n为两正整数,则p(1)________。dxn解析:因(1xm)n(1x)n(1xx21...xm)n=uvnp(x)=dn(1xm)n(uv)nckukvnkdxnnk0nkknknnnknnp(1)cnnu1v1cu1v1(1)n!mk02例五:设函数fx()在x=a处可导,则函数|f(x)|在x=a处不可导的充分条件是_________。A,f(a)=0且f''(a)=0B,f(a)>0且f(a)>0C,f(a)<0且f''(a)<0D,f(a)=0且f(a)0解析:分析A,取f(x)=|x|在x=0处可导,f(0)=0,f'(0)=0,|f(x)|=|x|x||=x2在x0处可导分析B,f()a0,limf()xf()a0xa由极限保号性知u(a,)(a,a)当x(a,)时,有f(x)0,lim|()||()|fxfalimf()xf()af'(a)xaxaxaxa分析C,()0,lim()fafxf()0a由极限保号性知u(,)(aa,a)xa当x(a,)时,有f(x)0,lim|()||()|fxfalimf()()xfaf'(a)xaxaxaxa分析D(正确选项),f(a)0,f'(a)01,f''(a)0,0f(a)limf()()()xfalimfxxaxaxaxa由极限的保号性去心领域va(,)fx()当x去心领域v(a,)有xa0|f(x)||f(x)|f(x)'当x(a,a)时,f(x)0,limxalimxaf(a)xaxa|f(x)||f(x)|f(x)'当x(a,a+)时,f(x)0,limxalimxaf(a)xaxa变形样式一:变形样式二:3例六:设fx()是可导偶函数,则下列函数中比为奇函数的是()xA,f()td1txB,tf(1t2)d0txC,t2f'(t)d0tD,()x23fx解析:1、可导奇函数,其导函数必为偶函数可导偶函数,其导函数必为奇函数可导周期函数,其导函数必为周期函数x2,f(x)为连续奇函数,则fd(t)为可导偶函数atxf(x)为连续偶函数,则f()td为可导奇函数0txf(x)为连续T周期函数则f()td为周期函数atTf(x)d(x)00由以上知:f()()x33fx例七:4设在x=0的某邻域内,函数f(x)满足f''(x)+[f(x)]'22sinx,则下列命题满足:A,当f(x)'0时,x=0不是f(x)极值点,(0,f(0))是曲线y=f(x)的拐点;B,当f(x)'=0时,x=0是fx()极值