如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
数学建模与数学实验实验目的连续系统模拟实例:追逐问题模拟的概念模拟的方法在实际问题中,面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,与面临的实际问题可能相差甚远,以致解答根本无法应用.这时,计算机模拟几乎成为唯一的选择.例1在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点.需要模拟出以下两件事:2.符号假设4.模拟结果5.理论计算6.结果比较产生模拟随机数的计算机命令ToMATLAB(rnd)设离散型随机变量X的所有可能取值为0,1,2,…,且取各个值的概率为其中>0为常数,则称X服从参数为的泊松分布.如相继两个事件出现的间隔时间服从参数为的指数分布,则在单位时间间隔内事件出现的次数服从参数为的泊松分布.即单位时间内该事件出现k次的概率为:返回连续系统模拟实例:追逐问题1.建立平面直角坐标系:A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).v=1;dt=0.05;x=[001010];y=[010100];fori=1:4plot(x(i),y(i),'.'),holdonendd=20;while(d>0.1)x(5)=x(1);y(5)=y(1);fori=1:4d=sqrt((x(i+1)-x(i))^2+(y(i+1)-y(i))^2);x(i)=x(i)+v*dt*(x(i+1)-x(i))/d;y(i)=y(i)+v*dt*(y(i+1)-y(i))/d;plot(x(i),y(i),'.'),holdonendend离散系统模拟实例:排队问题[1]系统的假设:(1)顾客源是无穷的;(2)排队的长度没有限制;(3)到达系统的顾客按先后顺序依次进入服务,即“先到先服务”.[2]符号说明w:总等待时间;ci:第i个顾客的到达时刻;bi:第i个顾客开始服务时刻;ei:第i个顾客服务结束时刻.xi:第i-1个顾客与第i个顾客到达之间的时间间隔yi:对第i个顾客的服务时间[3]模拟框图用蒙特卡罗法解非线性规划问题基本假设框图在MATLAB软件包中编程,共需3个M文件:randlp.m,mylp.m,lpconst.m.主程序为randlp.m.%randlp.mfunction[sol,r1,r2]=randlp(a,b,n)%随机模拟解非线性规划debug=1;a=0;%试验点下界b=10;%试验点上界n=1000;%试验点个数r1=unifrnd(a,b,n,1);%n1阶的[a,b]均匀分布随机数矩阵r2=unifrnd(a,b,n,1);sol=[r1(1)r2(1)];z0=inf;fori=1:nx1=r1(i);x2=r2(i);lpc=lpconst([x1x2]);iflpc==1z=mylp([x1x2]);ifz<z0z0=z;sol=[x1x2];endendend4.某设备上安装有4只型号规格完全相同的电子管,已知电子管寿命服从1000~2000h之间的均匀分布.电子管损坏时有两种维修方案,一是每次更换损坏的那只;二是当其中1只损坏时4只同时更换.已知更换时间为换1只时需1h,4只同时换为2h.更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法确定哪一个方案经济合理?初始化:i=0,k1=0,k2=0,k3=0投掷硬币的计算机模拟掷骰子的计算机模拟初始化:i=0,k1=0,k2=0,k3=0