您所在位置: 网站首页 / 文档列表 / 运动健身 / 文档详情
区间与动轴.doc 立即下载
上传人:天马****23 上传时间:2024-09-09 格式:DOC 页数:23 大小:4.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

区间与动轴.doc

区间与动轴.doc

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

区间与动轴(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)题目高中数学复习专题讲座二次函数、二次方程及二次不等式的关系高考要求三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法重难点归纳1二次函数的基本性质(1)二次函数的三种表示法y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n(2)当a>0,f(x)在区间[p,q]上的最大值M,最小值m,令x0=(p+q)若-<p,则f(p)=m,f(q)=M;若p≤-<x0,则f(-)=m,f(q)=M;若x0≤-<q,则f(p)=M,f(-)=m;若-≥q,则f(p)=M,f(q)=m2二次方程f(x)=ax2+bx+c=0的实根分布及条件(1)方程f(x)=0的两根中一根比r大,另一根比r小a·f(r)<0;(2)二次方程f(x)=0的两根都大于r(3)二次方程f(x)=0在区间(p,q)内有两根(4)二次方程f(x)=0在区间(p,q)内只有一根f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立(5)方程f(x)=0两根的一根大于p,另一根小于q(p<q)3二次不等式转化策略(1)二次不等式f(x)=ax2+bx+c≤0的解集是(-∞,α)∪[β,+∞a<0且f(α)=f(β)=0;(2)当a>0时,f(α)<f(β)|α+|<|β+|,当a<0时,f(α)<f(β)|α+|>|β+|;(3)当a>0时,二次不等式f(x)>0在[p,q]恒成立或(4)f(x)>0恒成立典型题例示范讲解例1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)(1)求证两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值范围命题意图本题主要考查考生对函数中函数与方程思想的运用能力知识依托解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合错解分析由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”技巧与方法利用方程思想巧妙转化(1)证明由消去y得ax2+2bx+c=0Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4[(a+c2]∵a+b+c=0,a>b>c,∴a>0,c<0∴c2>0,∴Δ>0,即两函数的图象交于不同的两点(2)解设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=-,x1x2=|A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2∵a>b>c,a+b+c=0,a>0,c<0∴a>-a-c>c,解得∈(-2,-)∵的对称轴方程是∈(-2,-)时,为减函数∴|A1B1|2∈(3,12),故|A1B1|∈()例2已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围(2)若方程两根均在区间(0,1)内,求m的范围命题意图本题重点考查方程的根的分布问题知识依托解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义错解分析用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点技巧与方法设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制解(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得∴(2)据抛物线与x轴交点落在区间(0,1)内,列不等式组(这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过)例3已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程=|a-1|+2的根的取值范围解由条件知Δ≤0,即(-4a)2-4(2a+12)≤0,∴-≤a≤2(1)当-≤a<1时,原方程化为x=-a2+a+6,∵-a2+a+6=-(a-)2+∴a=-时,xmin=,a=时,xmax=∴≤x≤(2)当1≤a≤2时,x=a2+3a+2=(a+)2-∴当a=1时,xmin=6,当a=2时,xmax=12,∴6≤x≤12综上所述,≤x≤12学生巩固练习1若不等式(a-2)x2+2(a-2)x-4<0对一切x∈R
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

区间与动轴

文档大小:4.3MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用

手机号注册 用户名注册
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
登录
手机号登录 微信扫码登录
微信扫一扫登录 账号密码登录

首次登录需关注“豆柴文库”公众号

新用户注册
VIP会员(1亿+VIP文档免费下)
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用