您所在位置: 网站首页 / 文档列表 / 信息管理 / 文档详情
信息学竞赛中的思维方法.doc 立即下载
上传人:天马****23 上传时间:2024-09-09 格式:DOC 页数:62 大小:3.5MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

信息学竞赛中的思维方法.doc

信息学竞赛中的思维方法.doc

预览

免费试读已结束,剩余 52 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

信息学竞赛中的思维方法(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)SUBJECT\*MERGEFORMAT信息学竞赛中的思维方法广东省韶关一中陈彧【关键字】KEYWORDS\*MERGEFORMAT信息学思维方法【摘要】本文将借鉴一些数学思维理论,探讨思维方法在信息学竞赛中的地位和作用,并介绍信息学竞赛中的几种思维方法,包括:试验猜想及归纳、模型化、分类及分治、类比。其中将引用大量的例题进行思维过程的分析,大部分的例题是1999年NOI、IOI试题,具有广泛的代表性。最后总结本文讨论的目的及启迪。【引论】“奥林匹克是思维的体操”。同其它学科竞赛一样,信息学竞赛是在丰富的知识、一定的实践能力的基础上,思维与思维的竞赛。优秀的选手往往具有快速、敏捷的思维。因此,在我们不断探讨方法、总结经验的同时,有必要尝试探索系统的思维方法,以达到启迪思路的目的。注意思维方法并不是解题方法,我们重在对思考问题的过程的讨论,而不是对解决问题的算法的总结。在对思维方法的具体讨论之前,让我们来看看数学家G·波利亚在1944年提出的“怎样解题表”REF_Ref471366266\r\h[1]:……你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用的上的定理?看看未知数!试想出一个具有相同未知数的或相似未知数的熟悉的问题。这里由一个与你现在的问题有关,且早已解决的问题。你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去。如果你不能解决所提出的问题,可先解决一个与此有关的问题。你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?……如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?……尽管这张表是为解决数学问题而设计的,但是它给我们的启迪是多么深刻!信息学与数学的联系是何等的紧密,而数学思维又是一门成熟的理论,它给我们的探讨带来宝贵的启示。【正文】思维方法是多种多样、因人而异的。本文将选取其中最具代表性的几种。首先,我们试按传统的“纵向”、“横向”标准,将本文要讨论的信息学竞赛思维的几种一般方法划分为:纵向:试验猜想及归纳、模型化(化归)。横向:分类及分治、类比。其中模型化及类比是这里重点介绍的思维方法,当然此外我们也会多少涉及一些其它的思维方法,如递归、筛选、最优策略、逆向思维等等也都是我们常见、熟悉的,但因篇幅所限而略去。试验、猜想及归纳我们每个人的知识构成不同,解决问题的经验不同,思维的品质不同,甚至性格各异,面对陌生的问题时,产生的直觉、“灵感”就五花八门、各种各样。在分析问题时,我们会往往不止一次地做猜测:“会不会是这样”、“这不就是某某问题吗”。这些就是在个人知识、经验、智力的作用下的一种猜想思维。有时,当问题过于复杂,“老鼠拉龟”——无从下手,无法联系自己的知识时,我们往往希望“尽己所能,先解决规模更小的问题,找找问题是否存在规律吧”。这种“缩小规模”、“找规律”的想法就是试验思维。试验和猜想经常是结合在一起的。不要认为这些思维是“不正规”、不是“名门正道”的,相反,它体现的是人的思维的火花的跳跃的美。归纳的过程是对试验猜想的总结或证明。归纳通常是严格的。不过,竞赛是紧张、紧迫的,在竞赛中的严格的归纳是不简单的、少见的。来看一个猜想的例子,IOI’99第一题《小花店》(详见REFeg9\h\*MERGEFORMAT[例题7]),经验丰富的选手也许未到题目看完就猜测解题的方法是动态规划,这个猜想的形成诱导他快速地完成题目分析,从而最终确定算法。这个猜想来源于扎实的基本功、广泛的实践和丰富的经验:选手对动态规划的实践较多,思考时可以自然的与做过的例题类比而做出猜想。所以猜想决不是“瞎猜”。另一种猜想来源于试验。这里有一个最“经典”的例子:[例题1]m,n∈N,1<=m,n<=k<=109,且(n2-mn-m2)2=1,输入k,求m,n使m2+n2最大。(NOI’95)从数据的规模可“猜想”本题一定蕴含着更为简单的数学关系,但是题目的数学关系不明显,数学分析的难度太大。而用简单的两重循环枚举可以很方便的算出小数据的情况。K123,45,6,78,9,10,11,1213…M1235813…N112358…通过这些试验,我们猜想符合条件的m,n成Fibonacci数列。实际上:n2-mn-m2=-(m2+mn-n2)=-[(m+n)2-mn-2n2]=-[(m+n)2
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

信息学竞赛中的思维方法

文档大小:3.5MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用

手机号注册 用户名注册
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
登录
手机号登录 微信扫码登录
微信扫一扫登录 账号密码登录

首次登录需关注“豆柴文库”公众号

新用户注册
VIP会员(1亿+VIP文档免费下)
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用