您所在位置: 网站首页 / 文档列表 / 图形图像 / 文档详情
例谈TI图形计算器在高中数学必修教学上的应用[整理版]优秀名师资料.doc 立即下载
上传人:天马****23 上传时间:2024-09-09 格式:DOC 页数:343 大小:5.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

例谈TI图形计算器在高中数学必修教学上的应用[整理版]优秀名师资料.doc

例谈TI图形计算器在高中数学必修教学上的应用[整理版]优秀名师资料.doc

预览

免费试读已结束,剩余 333 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

例谈TI图形计算器在高中数学必修教学上的应用[整理版]优秀名师资料(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)例谈TI图形计算器在高中数学(必修)教学上的应用[整理版]例谈TI图形计算器在高中数学(必修)教学上的应用福州第八中学欧阳师章内容提要:高中数学新课标提倡利用现代信息技术整合教与学,TI图形计算器的智能画图、数据处理、编程系统等功能,为学生创设了图文并茂、丰富多彩、人机交互、即时反馈的学习环境,充分激发了学生的积极性、主动性与出创造性。TI的引入优化了学生的认知结构,提高了课堂效率,从而推进了教育信息化工程。关键词:TI图形计算器数学教学问题探究数学教学不仅仅是传授数学知识和基本技能,更重要的是把发现和创造的思维方法交给学生,并从世界观与方法论的高度给学生以启迪,这是科学的教学方法。荷兰数学教育家H.Freudenthal提出数学教学应再现数学知识的发生过程的观点,他指出“通过再创造获得的知识与能力要比以被动方式获得理解得更好也更容易保持”。因此数学教学应该是学生在教师的指导下学习数学家的思维活动,即数学教学应是数学活动的过程教学。突出过程,就是强调知识体系的形成过程,强调数学思维方法的形成过程,即数学问题的发现过程,各种解题方法的逐步演变和优化的过程。所以数学实验课的教学就显得非常重要了。因为数学实验不是将现成的结论教给学生,而是根据数学思维的发展脉络,创设问题情境,利用实验手段,设计系列问题,增加辅助环节,从观察、测量、计算到想象、发现、猜想,然后进行理论证明,从而使学生亲历数学建构过程,逐步掌握认识事物、发现真理的方式、方法。而TI图形计算器的参与正好为数学实验课的实施提供了技术保证。TI图形计算器功能强大,其几何绘图系统既可作常规作图,还能进行动态演示,变换,便于展示知识形成过程。它打破了单一的黑板静态教学模式,以动态演示,可控过程及代数研究相结合的形式,直观地表现出问题的数与形关系,也就是利用图形计算器技术可创设精彩的教学情境,以增加教学的直观性和学生的参与性。更重要的是,利用图形计算器可对实验数据进行定性和定量分析,便于学生“做”数学,又可以从图形变换的层次和整体中帮助学生抓住事物的本质,促进学生由形象思维向抽象思维转化,加强对数学概念的理解。TI图形计算器是基于教师的教和学生的学而专门设计的,它更符合学科教学的要求,更适应学生学习的要求,在TI手持技术的支持下,数学知识的多样化表达方式可以极大地拓展数学学习空间,有力地支持学生的学和教师的教,使高水平的、深层次的数学思维活动获得有力的支持,使学生自主探究式学习成为可能并得到落实,它随时随地的特点使学生更容易发挥其主体作用。TI图形计算器以其操作便捷、相对简单而又功能较齐全的特点,笔者通过学校建立的数学实验室结合教学实践从以下几个方面举例谈谈:一、使用TI技术影响学生的数学知识的形成过程可提高教学效率使用TI图形计算器有利于激发学生的学习兴趣和欲望,心理学告诉我们:“兴趣是人们对事物的选择性态度,是积极认识某种事物或参加某种活动的心理倾向(它是学生积极获取知识形成技能的重要动力(”兴趣之根本在于它是使得学生知识的形成是主动式的,而非传统的被动式形成;其次是使用TI图形计算器更能直观、形象、动态的展示知识的形成过程,在解决某些数学问题时,有利于启迪学生的思维,让学生去寻找解决问题的途径和方法。案例利用TI求超越方程的近似解。TI—图形计算器的图象功能和交点功能可以求出两个函数图象的交点,从而进一步得到两个函数图象的交点的坐标,这为通过数形结合求超越方程的近似解提供技术支持,也为利用二分法求方程的近似解提供技术帮助,同时也培养了学生的数形结合的数学思想,华罗庚先生指出:数缺形时少自觉,形少数时难入微,数形结合百般好,割裂分家万事非.说的正是要求我们在数学教学中多培养学生的数形结合的思想.例1:求方程x=?3lgx的近似解(精确到0.01).分析:画出两个函数yx和y=-3lgx的图象,其交点的横坐标便是所求方程的近似解,于是通过TI—图形计算器测量其交点坐标进而求得方程的近似解.解法一:?在函数编辑器中输入函数y=x和y=-3lgx并在同一坐标系下画出它们的图象,如图y=-3lgx图?在图象窗口下,利用求交点的功能便可以作出函数y=x和象的交点,并显示交点的坐标为(0.6198,0.6232),如图于是所求方程的近似解为x?0.62.解法二:利用图形计算器的求方程的功能来求解,如图输入方程:可求得方程的近似解为x?0.62.当然在学生学习了二分法之后,可以借助算法编写程序求出近似解。二分法这个概念在《必修一》函数应用一章中出现,它的理论基础是:若函数y=f(x)在闭区间[a,b]上的图像是连续曲
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

例谈TI图形计算器在高中数学必修教学上的应用[整理版]优秀名师资料

文档大小:5.2MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用

手机号注册 用户名注册
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
登录
手机号登录 微信扫码登录
微信扫一扫登录 账号密码登录

首次登录需关注“豆柴文库”公众号

新用户注册
VIP会员(1亿+VIP文档免费下)
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用