如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
七年级暑期提高班讲义--图形的分割与剪拼(2)1.现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作)。如图甲(虚线表示折痕)。除图甲外,请你再给出三个不同的操作(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作。如图乙和图甲是相同的操作)。(甲)(乙)2.已知:如图(1),在中,,直线平分交AC于点D。求证:与都是等腰三角形。(1)(2)(3)(2)在证明了该命题后,小颖发现:下列两个等腰三角形如图(2)、(3)也具有这种特性。请你在图(2)、(3)中分别画出一条直线,把他们分成两个小等腰三角形并在图中标出所画等腰三角形两个底角的度数;ABC3.(1)已知中,,请画一条直线,把这个三角形分割成两个等腰三角形。(2)已知中,是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求与之间的关系。4.操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,使点A与点C重合,DE为折痕.试证明△CBE等腰三角形;(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?AAABCBBDCEEDCF图①图②图③图④5.在Rt△ABC中,∠A=90°,BD平分∠ABC,M为射线CA上一点,ME⊥BC于点E,∠AME的平分线MF交AB于点F(1)如图1,若∠ABC=40°,M为边CA上一点,试探究BD与FM的位置关系,并说明理由(2)如图2,若∠ABC=α,M为边CA延长线上一点,①图2中∠ABC的平分线BD未画,请补画出来(“尺规作图”,不写作法,但要保留作图痕迹).②试探究BD与FM的位置关系,并说明理由.图1图26.如图,A、E、F、C四点在同一直线l上,AC=8,AE=CF=1,过E、F分别作DE⊥AC,BF⊥AC,且DE=BF,连接AD、BC,连接BD交AC于点O,(1)请直接判断AD、BC的关系.(2)试说明O为AC的中点.(3)若△BFC固定不动,将△ADE沿直线l平移到△A’D’E’(A、D、E的对应点分别为A’、D’、E’),连接BD’交直线l于点O’,试探究如何平移△ADE,使得OO’=1.2?请直接写出△ADE的平移方向和距离.lLlL