如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
课题中考数学阅读理解题专题复习学情分析由于近些年中考题目中,“课题学习”类的试题频繁出现,但是学生对这一块的知识点掌握的不够熟练,现结合典型的真题,重点讲解这一类题的解题思路。教学目标与考点分析1、熟练掌握解这一类题的方法和技巧;2、能够准确的理解题目的意思并且会合理的运用题目中透露出来的知识点进行知识的迁移;3、培养学生勤于思考和解决问题的能力。教学重点对题意的准确理解以及熟练运用。教学方法导入法、讲授法、归纳总结法学习内容与过程课题学习类试题通常以探索、研究、实验操作等不同形式呈现于中考中,并借助恰当的数学素材,作为试题的内容和明确的研究方向;或是以几何图形为题材,或是以数学问题为背景等;通过对相关问题的描述或逐步观察、操作(包括数据分析、整理、运算或作图、或证明)和归纳、探究等,进而发现问题,创新问题.试题在注重考查相关基础知识、基本技能、方法的同时,更注重考查对相关知识的联想、探索、发现、总结归纳及创新的能力。是近几年中考改革中出现的新题型。一般包含:课题的提出、数学模型的建立、问题的解决、数学知识的应用、酝酿与形成研究问题的方法。“课题学习”类试题在近年各地中考试题中频频出现,此类题型特点鲜明、内容丰富、超越常规,源于课本,又高于课本,不仅注重数学实践应用、动手探究的培养,还关注学生学习的过程和思想方法的渗透.这类试题较好地考查了学生的阅读理解能力、知识迁移能力和分析问题、解决问题的能力,这无疑为课堂教学注入了新鲜的活力。它既是一项全新的课程内容.又是一种具有现实性、问题性、实践性、综合性和探索性的新型的学习活动。经常成为呈现中考数学知识和能力的载体。一、情景问题拓展类例1:情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.图1图2问题探究图3如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.拓展延伸图4如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.阅读理解类例2:探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.(第25题)①(2)方法迁移:如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(第25题)②(3)问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).(第25题)③三、课题实验探究类例4:课题:两个重叠的正多形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示解的度数:θ3=_______,θ4=_______,θ5=_______;(2)图1—图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2…An-1与正n边形A0B1B2…Bn-1重合(其中,A1与B1重合),现将正边形A0B1B2…Bn-1绕顶点A0逆时针旋转α(0º<α<EQ\F(180º,n)).(3)