如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一元二次方程应用题一网打尽小飞侠tzy编题型一、平均增长(或降低)率问题:例1.某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.例2.某电脑公司2012年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.小结:平均变化率问题的公式为A=a(1+x)n其中a为变化前的基数,x为变化率(增长时x>0,减小时x<0),n为变化次数,A为变化后的量练习1、一商店1月份的利润是2000元,3月份的利润达到2420元,若这两个月的利润的增长率相同,则增长率是多少?变式训练:制造一种产品,原来每件的成本价是100元,由于连续两次降低成本,现在的成本是81元,求平均每次降低成本的百分率。巩固练习(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.(3)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.(4)某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为,则根据题意列方程为()A.B.C.D.(5)某县为发展教育事业,加强了对教育经费的投入,2010年投入3000万元,预计2012年投入5000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是()A.B.C.D.(6)制造一种产品,原来每件的成本价是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分数为_________.(7)某种电脑病毒传播速度非常快,在某局域网中(假设每台电脑都在运行)有一台电脑被感染,经过两分钟后就有81台电脑被感染,试计算每分钟平均一台电脑感染几台电脑?若病毒得不到有效控制,3分钟后被感染的电脑会不会超过700台?题型二、数形结合问题例1.2、如图所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144m2,求小路的宽度.例2、如图(a)、(b)所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q作DQ⊥CB,垂足为D,则:)分析:(1)设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.(2)设经过y秒钟,这里的y>6使△PCQ的面积等于12.6cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.练习1、在一块正方形的钢板上裁下宽为20cm的一个长条,剩下的长方形钢板的面积为4800cm2。求原正方形钢板的面积。2、有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成,如果竹篱笆的长为35m,求鸡场的长与宽各为多少米?3、已知甲乙二人同时从同一地点出发,甲的速度为7,乙的速度为3。乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇。那么相遇时,甲乙各走多远?4、一个直角三家形的斜边长7cm