您所在位置: 网站首页 / 文档列表 / 微积分 / 文档详情
数列教学反思.docx 立即下载
上传人:小沛****文章 上传时间:2024-09-09 格式:DOCX 页数:29 大小:30KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

数列教学反思.docx

数列教学反思.docx

预览

免费试读已结束,剩余 19 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数列教学反思身为一名刚到岗的教师,课堂教学是重要的任务之一,通过教学反思可以很好地改正讲课缺点,那么大家知道正规的教学反思怎么写吗?以下是小编为大家收集的数列教学反思,希望能够帮助到大家。数列教学反思1在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考:一、对内容的理解及相应的教学设计1、“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题。因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念。2、等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题。其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开。本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”。3、用公式解决问题的内容很丰富。本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程。这样的处理比较恰当。二、求和公式中的数学思想方法在推导等差数列求和公式的过程中,有两种极其重要的数学思想方法。一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法。从特殊到一般的探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。从一般到特殊的化归思想方法的揭示是本节课的最大成功之处。以往人们常常只注意到“倒序相加”是推导等差数列求和公式的'关键,而忽视了对为什么要这样做的思考。同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的求和,求和的本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”。相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的思想精髓。不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现。在等差数列求和公式的推导过程中,其实有这样一个问题链:为什么要对和式分组配对?(因为想转化为相同数求和)为什么要“倒序相加”?(因为可以避免项数奇偶性讨论)为什么“倒序相加”能转化为相同数求和?(因为等差数列性质)由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因。三、几点看法1、注意挖掘基础知识的教学内涵对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地。其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上。2、用好教材现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图。当然,由于教材的客观局限性,还需要教师去处理教材。譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平。3、学无止境一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次。譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当。课没有最好只有更好!数列教学反思2本节课有意识地引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生温故旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。通过引导学生对几个具体数列特点的探索,然后一般地归纳这类数列的特点,进而给出等比数列的定义,并将其数学符号化,再对几个具体数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的运用。培养学生观察分析能力,抽象概括能力。继引导学生为等比数列下定义之后,探索等比数列的通项公式又是一个重点。这里,我们通过引导学生试着求出a2,a3,a4,进而归纳猜想出an=a1qn-1,然后进行检验证明,即通过既教证明,又教猜想,旨在揭示科学实验的规律,从而暴露知识的形成过程,体现数学发现的本质,培养学生合情推理能力、逻辑推理能力、科学的思维方式、实事求是的科学态度及勇于探索的精神等个性品质。试验——猜想——验证——证明,这是探求真理的有效途径之一。试求几个简单的结果是必要的,它是猜想的依据,正如波利亚指出的那样:“首先尝试最简单的情形是有道理的。即使我们被迫最后返回到一种比较周密的较为复杂性研究
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数列教学反思

文档大小:30KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用

手机号注册 用户名注册
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
我已阅读并接受《用户协议》《隐私政策》
已有账号?立即登录
登录
手机号登录 微信扫码登录
微信扫一扫登录 账号密码登录

首次登录需关注“豆柴文库”公众号

新用户注册
VIP会员(1亿+VIP文档免费下)
年会员
99.0
¥199.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用