如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
《被数学选中的人》观后感《被数学选中的人》观后感认真品味一部作品后,一定有不少感悟吧,让我们好好写份观后感,把你的收获感想写下来吧。但是观后感有什么要求呢?以下是小编精心整理的《被数学选中的人》观后感,欢迎阅读与收藏。《被数学选中的人》观后感1平常我们可能会觉得数学好难,好枯燥,甚至对它恨之入骨。但是我们的世界真的可以没有数学吗?当然不行。世间万物都是由数学构成的,数学像一位伟大的母亲,养育了天文学、物理学等学科,不断推动着世界的发展。那么,既然数学那么伟大,一定非常深奥吧--确实是。就从圆周率π开始说吧,它的定义每个人都懂,圆周长与直径的比值,可它具体有多大呢?我们只关心做题时用到的近似值:,可却有一些人,他们耗尽心血,花费一生来求这个数,比如阿基米德,直至死亡最后一秒都在呼喊:“不要弄乱我的圆!”类似于π这样的数还有很多,更难的也有。到底是什么魅力吸引着全世界的数学家们用自己宝贵的青春和生命,去解决几个千百年前就提出的无人能解的问题呢?其实是热爱,只要热爱做一件事情,再大的困难都不是困难。这些我们眼中的“狂人”,因为对数学痴迷到了极致,才有动力,去不断解决那些问题。我开始意识到,我们的目光是多少的短浅啊!我们在课堂上学的东西其实都只是数学的表面,我们还远远未到那种境界,那种层次。纪录片中,有一句话让我印象深刻“在人们走入社会之后,忘掉了学过的数学那部分之外,都是数学的本质。那么,这些沉淀下来的数学的本质,必将帮助于未来的生活。”但这些数学的本质,难道是我们天生就有的吗?并不是,感谢这些老师们,将数学的种子播撒在我们心中,他们在传播数学知识的同时,也同时在传播未来的希望,培养未来的人才。写了如此之多,再回过头来看标题《被数学选中的'人》,他们也许是早年成名、年纪轻轻便学富五车的人,也可能是单凭一己之力解开千百年来数学难题的数学家、物理学家,还或许是我们身边的数学老师以及“别人家的孩子”等等等等。他们为何如此优秀?不仅是因为数学选中了他们,同时他们,也选中了数学,从而创造出一个又一个伟大而耀眼的时代。我们或许不会被数学选中,但我们却可以选中数学。数学是推动万物发展的核心力量,只有我们努力学数学,学好数学,地球的明天才会更加美好!《被数学选中的人》观后感2什么是数学?数学家的工作是什么?数学教会了我们什么?我们为什么要学数学?我们可能从未思考过这些问题。这些问题的答案是什么?在看完《被数学选中的人》后,我的心中有了自己的答案。被数学选中的人是谁?他们是数学家们,物理学家们,天文学家们,工程师们......是一切对数学研究工作作出了卓越贡献的人和对教学报有极大热情的人。数学对于他们而言,是简洁的、干净的、理性的,高有创造力的,也是美丽的,数学的发展也得益于被数学选中的人们,数学的发展经过了漫长的过程,它是一种抽象的概念,却完美符合了大自然的种种发展规律。它应规律而生,是人类文明最核心,最抽象的知识源泉,是人类认知、解释、传播世界本质规律的工具。数学是万物的基本,是坚定自然规律的抽象艺术,更是使人类得到巨大进步的`齿轮,也正是因此,我们要努力学好数学。那么,我们是否可以这么说:数学是一种用作解释规律的抽象工具,也是促进人类社会和其他学科发展、进步的根本。数学家们正是在数学领域做出巨大贡献的人,他们的工作也很好解释--解决数学问题。他们有的穷尽一生解决数学难题,这对于我们普通人而言无疑是一件不可思议的事,或认为这是一种资源上的浪费。但事实上,这些拥有最聪明大脑的人类本身也不能完全确定自己所做的是否有意义,但他们依旧锲而不舍的去钻研。这种精神本身就是十分可贵的。就像“π”一样--数学家们用了20xx余年的时间证明它是一个无限不循环小数,还有费马大定理,哥德巴赫猜想等,人们的生活离不开数学,这也是数学家们坚持不懈的一个重要原因,他们是可敬的。我们作为中学生,作为祖国未米的栋梁,更要努力学数学,热爱数学,就像先前无数的数学家一样。学好数学,是社会进步的前提,更是我们每个人的应尽之义。《被数学选中的人》观后感3上回说到,这次寒假,我们的数学老师喻老师给我们布置了一个作业,观看纪录片《被数学选中的人》,并每集都写一篇观后感。《被数学选中的人》的第二集里,讲述了许多数学家攻克难题的故事。比如求出圆周率,证明费马大定律。有些数学难题可能穷尽数学家的一生也未必有答案,但这些数学家们仍然皓首穷经,孜孜以求。数学研究跟发明创造最大不同在于它的滞后性。很多数学难题被解答出来,被证明出来了,也未必就能对人类现在的生活能提供多大的帮助。这会让数学家的`工作看起来毫无意义和成就,尤其是在现在这样一个求快求实的社会里。但数学并不是真的无用。很多数学的理论知识,往往要到几十年,甚至几百年之后,才会被投入实际的应用中。假如没有虚数,现代人就没有描述电磁场,假如没有